Molecular dynamics modeling of cooling of vibrationally highly excited carbon dioxide produced in the photodissociation of organic peroxides in solution.

نویسندگان

  • Alexander Kandratsenka
  • Jörg Schroeder
  • Dirk Schwarzer
  • Vyacheslav S Vikhrenko
چکیده

Non-equilibrium (NEMD) and equilibrium (EMD) molecular dynamics simulations are performed to investigate the vibrational cooling and asymmetric stretch spectral evolution of highly excited carbon dioxide produced in the photodissociation of organic peroxides in the solvents dichloromethane, carbon tetrachloride and xenon. Due to strong Fermi resonance the symmetric stretching and bending modes of carbon dioxide in CH2Cl2 and CCl4 jointly relax on a ten and hundred picosecond timescale, respectively, which is in accordance with experiment. However, the high frequency CO2 asymmetric stretch vibration relaxes on a considerably longer time scale because of weak interaction with the other modes. The relaxation rate coefficients of (and works done by) different modes obtained from NEMD and the Landau-Teller rate coefficients calculated through equilibrium force time correlation functions are in reasonable agreement. The analysis of these results leads to the conclusion that, in contrast to xenon where the relaxation takes about 20 ns, the shorter time scales in CH2Cl2 and CCl4 are caused by efficient near resonant vibration to vibration energy transfer from carbon dioxide to solvent molecules. The results of the non-equilibrium simulations are used to monitor the quasi-stationary asymmetric stretch infrared spectra of carbon dioxide during the cooling process. Comparison of the corresponding experimental results suggests that carbon dioxide initially is produced with a broad distribution of energy disposed in its bend and symmetric stretch modes while the asymmetric stretch mode remains unexcited.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acetylene-vinylidene Isomerization Dynamics and Influence on Energetics and Collisional Energy Transfer

Acetylene has proven an interesting case study, both for its ubiquity in nature as well as its implementation in industry. It is readily used in a variety of commercial applications and scientific inquiries, and as such, knowledge of its chemical and physical properties is indispensible. Furthermore, its prevalence as an intermediate in combustion reactions makes the study of highly vibrational...

متن کامل

Mode-specific energy absorption by solvent molecules during CO2 vibrational cooling.

Non-equilibrium molecular dynamics (NEMD) simulations of energy transfer from vibrationally excited CO(2) to CCl(4) and CH(2)Cl(2) solvent molecules are performed to identify the efficiency of different energy pathways into the solvent bath. Studying in detail the work performed by the vibrationally excited solute on the different solvent degrees of freedom, it is shown that vibration-to-vibrat...

متن کامل

Modeling and Experimental Study of Carbon Dioxide Absorption in a Flat Sheet Membrane Contactor

comIn the present study, CO2 removal from natural gas stream has been studied using a flat sheet membrane contactor. A three dimensional mathematical model is developed to describe the process. The model considers the transport of a gas mixture containing carbon dioxide and methane through a flat sheet membrane contactor module. The model is based on the non-wetted mode of operation, in which t...

متن کامل

Mode selective photodissociation dynamics in V+(OCO).

The electrostatic V+(OCO) complex has a vibrationally resolved photodissociation spectrum in the visible. Photodissociation produces V+ + CO2 (nonreactive pathway) and VO+ +CO (reactive pathway). Production of VO+ is energetically favored, but spin forbidden. One-photon dissociation studies confirm mode selectivity observed by Lessen et al. [J. Chem. Phys. 95, 1414 (1991)]: excitation of one qu...

متن کامل

Estimation and modeling of gas emissions in municipal landfill (Case study: Landfill of Jiroft City)

One of the major factors, contributing to the emission of greenhouse gases in the environment is generation of pollutant gases in municipal landfills. As for the design and building of a gas collecting system, it is necessary to properly estimate the amount and type of the landfill emissions. By means of LandGEM model, this study predicts the amount and type of the landfill gases, produced for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 7 6  شماره 

صفحات  -

تاریخ انتشار 2005